# Enantioselective Intramolecular Friedel-Crafts-Type $\alpha$-Arylation of Aldehydes 

K. C. Nicolaou, ${ }^{*, \dagger, \neq}$ Rüdiger Reingruber, ${ }^{\dagger, \S}$ David Sarlah, ${ }^{\dagger}$ and Stefan Bräse ${ }^{\S}$<br>Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, and Institute of Organic Chemistry, University of Karlsruhe (TH), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany

Received December 3, 2008; E-mail: kcn@scripps.edu

Enantioselective organo-SOMO catalysis has, in the last two years, been the subject of considerable development and exploration. A number of new and unique transformations have been reported, such as $\alpha$-allylation, ${ }^{1 \text { a }} \alpha$-oxyamination, ${ }^{2} \alpha$-enolation, ${ }^{1 \mathrm{~b}}$ and $\alpha$-vinylation, ${ }^{3}$ of aldehydes. Herein, we report a modification of this activation mode that involves the intramolecular Friedel-Crafts type $\alpha$-arylation of aldehydes ${ }^{4}$ carrying electron-donating groups on their aromatic nucleus (eq 1) and its application to the total synthesis of demethyl calamenene (7, Scheme 2), ${ }^{5}$ a potent cytotoxic agent against human adenocarcinoma A 549 .


As a model reaction, we investigated the reactivity of aldehyde 1a, a supreme substrate for Friedel-Crafts reaction in the presence of various secondary amines as catalysts and under different reaction conditions (Table 1). As oxidant, cerium(IV) ammonium nitrate (CAN) was employed, since its use as a suitable reagent for the oxidation of enamines has been demonstrated. ${ }^{6}$ Proline- ${ }^{7}$ and diphenylprolinolbased $^{8}$ ligands showed no catalytic activity under various reaction conditions and, in most cases, underwent oxidation and depletion. However, chiral 2-tert-butyl-3-methyl-5-benzyl-4-imidazolidinone $((2 R, 5 R)-\mathbf{A})$ was proven to be effective as a catalyst for the reaction, both in terms of efficiency and enantioselectivity (entry 4, Table 1). Interestingly, the related 2,2,3-trimethyl-5-benzyl-4-imidazolidinone proved inefficient as a catalyst for this transformation. From screening various solvents, it was found that the polarity of the solvent had a significant effect on the outcome of the reaction (entries 1-5, Table 1). Thus, acetone and DME were proven to be superior as solvents. The use of other oxidants, such as $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{Mn}(\mathrm{OAc})_{3}$, DDQ, and BAIB, resulted in decomposition of both substrate and catalyst. To further improve the reaction outcome, various additives were screened. It was found that water is of utmost importance for this process, as the reaction in DME under anhydrous conditions led to erosion of yield (entry 6, Table 1). Additionally, several basic cocatalysts showed no overall improvement (entries 7-10, Table 1).

The absolute configuration of the bicyclic aldehyde product $\mathbf{1 b}$ was determined by X-ray crystallographic analysis (see ORTEP drawing, Figure 1$)^{9}$ of the corresponding carbamate 1c (mp 149-153 ${ }^{\circ} \mathrm{C}$, EtOAc/hexanes), prepared by sodium borohydride reduction of $\mathbf{1 b}$, followed by reaction of the resulting alcohol with $p$-bromophenyl isocyanate ( $72 \%$ overall yield). The absolute configuration $(S)$ of the stereogenic center formed in this reaction $(\mathbf{1} \mathbf{a} \rightarrow \mathbf{1} \mathbf{b})$ using $(2 R, 5 R)$-A

[^0]Table 1. Screening of Reaction Conditions for the Intramolecular $\alpha$-Arylation ${ }^{a}$

|  |  | A ( $20 \mathrm{~mol} \%$ ), $\qquad$ <br> solvent, additive <br> 1b |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry | Solvent | Additive | Yield ${ }^{\text {b }}$ | $e e^{c}$ |
| 1 | acetone | $\mathrm{H}_{2} \mathrm{O}$ | 75 | 89 |
| 2 | THF | $\mathrm{H}_{2} \mathrm{O}$ | 67 | 92 |
| 3 | MeCN | $\mathrm{H}_{2} \mathrm{O}$ | 16 | 85 |
| 4 | DME | $\mathrm{H}_{2} \mathrm{O}$ | 80 | 94 |
| 5 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{H}_{2} \mathrm{O}$ | NR |  |
| 6 | DME | none | 46 | 95 |
| 7 | DME | $\mathrm{NaHCO}_{3}$ | 77 | 91 |
| 8 | DME | $\mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{O}$ | 46 | 95 |
| 9 | DME | DTBP $+\mathrm{H}_{2} \mathrm{O}$ | 64 | 94 |
| 10 | DME | $\mathrm{NaOAc}+\mathrm{H}_{2} \mathrm{O}$ | 60 | 95 |

[^1]

Figure 1. X-ray derived ORTEP drawing of compound 1c.
indicates that the intramolecular attack from the aromatic nucleus occurs from the Si face of the enamine intermediate formed in the catalytic cycle (vide infra).

Having established the optimum conditions for the reaction and its absolute stereochemical course, we then proceeded to investigate its generality and scope. As demonstrated in Table 2, a series of aldehydes incorporating an electron-rich aromatic system enter the cyclization reaction in good to excellent yield. The likely catalytic cycle for this reaction is depicted in Scheme 1 for substrate 2a. Thus enamine activation of aldehyde $\mathbf{2 a}$ by amine $(2 R, 5 R)$ - $\mathbf{A}$ is followed by singleelectron transfer oxidation of the resulting enamine $\mathbf{B}$ by CAN to afford the highly reactive radical cation $\mathbf{C}\left[\mathbf{C} \leftrightarrow \mathbf{C}^{\prime}\right]$ which rapidly collapses intramolecularly to Wheland- or $\sigma$-complex $\mathbf{D},{ }^{10}$ a characteristic intermediate in typical Friedel-Crafts reactions. This more stable species then loses a proton $(\mathbf{D} \rightarrow \mathbf{E})$ and undergoes a second singleelectron transfer oxidation with CAN to afford iminium species $\mathbf{F}$. Finally, hydrolysis of $\mathbf{F}$ affords aldehyde $\mathbf{2 b}$ and catalyst $(2 R, 5 R)-\mathbf{A}$ which enters back into the catalytic cycle.

As a demonstration of the power of this catalytic asymmetric reaction, we developed a short and efficient total synthesis of the

Table 2. Generality and Scope of the Intramolecular Friedel-Crafts $\alpha$-Arylation ${ }^{a}$
Entry
${ }^{a}$ Reactions were performed on 0.25 mmol scale using $20 \mathrm{~mol} \%$ of catalyst $(2 R, 5 R)-\mathbf{A}, 20 \mathrm{~mol} \%$ of TFA, 2.0 equiv of CAN, and 2.0 equiv of $\mathrm{H}_{2} \mathrm{O}$ in DME $(4.0 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{b}$ Isolated yield after flash column chromatography. ${ }^{c}$ Determined by HPLC analysis on chiral stationary phase of the corresponding alcohols obtained by $\mathrm{NaBH}_{4}$ reduction. ${ }^{d}$ Determined by HPLC analysis on chiral stationary phase of the corresponding Naproxen ester.

## Scheme 1. Proposed Catalytic Cycle of the Intramolecular

 Friedel-Crafts $\alpha$-Arylation
antitumor natural product demethyl calamenene (7, Scheme 2). ${ }^{11}$ Thus, Heck reaction between aryl iodide ${ }^{12} 3$ and 4-penten-1-ol $\left[\mathrm{Pd}(\mathrm{OAc})_{2} \text { cat., } n-\mathrm{Bu} \mathrm{N}_{4} \mathrm{NCl}, \mathrm{LiOAc} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{LiCl}\right]^{13}$ afforded aldehyde 4 a in $63 \%$ yield. Reaction of this aldehyde under the developed conditions led to bicyclic aldehyde $\mathbf{4 b}$ ( $56 \%$ yield, $90 \%$ ee). One pot oxidation/esterification with NIS, $\mathrm{K}_{2} \mathrm{CO}_{3}$, and MeOH in MeCN

Scheme 2. Total Synthesis of Demethyl Calamenene (7) ${ }^{\text {a }}$

${ }^{a}$ Reagents and conditions: (a) 4-penten-1-ol (1.1 equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}$ (3 mol \%), $n-\mathrm{Bu}_{4} \mathrm{NCl}$ ( 2.0 equiv), $\mathrm{LiOAc} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (3.0 equiv), LiCl (1.0 equiv), DMF, $25^{\circ} \mathrm{C}, 72 \mathrm{~h}(63 \%)$; (b) catalyst ( $2 R, 5 R$ )-A (20 mol \%), CAN (2.0 equiv), $\mathrm{H}_{2} \mathrm{O}$ ( 2.0 equiv), DME ( 0.0625 M ), $-30^{\circ} \mathrm{C}, 24 \mathrm{~h}(56 \%, 90 \%$ ee); (c) NIS ( 3.1 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 3.1 equiv), MeOH ( 104 equiv), MeCN, dark, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$ ( $84 \%$ ); (d) MeMgBr ( 3 M in ether, 2.0 equiv), THF, $0 \rightarrow 25^{\circ} \mathrm{C}$, 16 h ( $65 \%$ ); (e) $\mathrm{Et}_{3} \mathrm{SiH}$ (5.0 equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (3.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-10$ to $-5^{\circ} \mathrm{C}, 1 \mathrm{~h}$ ( $87 \%$ ).
furnished methyl ester 5 in $84 \%$ yield. ${ }^{14}$ Exposure of the latter compound to MeMgBr in THF provided alcohol 6 ( $65 \%$ yield), whose reductive deoxygenation with $\mathrm{Et}_{3} \mathrm{SiH}$ in the presence of TFA led to synthetic demethyl calamenene (7) in $87 \%$ yield. The physical data for synthetic 7 matched those previously reported for the natural product. ${ }^{11}$

Acknowledgment. We thank Professor Charles L. Perrin for insightful discussions and Drs. D. H. Huang, G. Siuzak, R. Chadha for NMR spectroscopic, mass spectrometric, and for X-ray crystallographic assistance, respectively. This work was supported by the National Science Foundation (CHE-0603217), the Skaggs Institute for Research, and the Deutscher Akademischer Austausch Dienst (fellowship to R.R.).

Supporting Information Available: Experimental procedures and compound characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

(1) (a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582. (b) Jang, H. Y.; Hong, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004.
(2) Sibi, M. P.; Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124.
(3) Kim, H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 398.
(4) For a related transformation, see: Aleman, J.; Cabrera, S.; Maerten, E.; Overgaard, J.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 5520.
(5) Bohlmann, F.; Zdero, C.; Robinson, H.; King, R. M. Phytochemistry 1979, 18, 1675.
(6) Narasaka, K.; Okauchi, T.; Tanaka, K.; Murakami, M. Chem. Lett. 1992, 92, 2099.
(7) For examples of proline-based catalysis involving enamines, see: (a) List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000, 122, 2395. (b) Mase, N.; Tanaka, F.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2004, 43, 2420.
(8) For examples of prolinol-derived ligands for enamine catalysis, see: (a) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804. (b) Notz, W.; Tanaka, F.; Watanabe, S.; Chowdari, N. S.; Turner, J. M.; Thayumanavan, R.; Barbas, C. F., III. J. Org. Chem. 2003, 68, 9624. (c) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (d) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.
(9) See the Supporting Information for the preparation of 1c. CCDC 709588 contains the supplementary crystallographic data for $\mathbf{1 c}$ and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
(10) In view of the requirement of electron donating substituents on the aromatic nucleus for this reaction, we favored the cationic rather than the radical mechanism operating in the corresponding reactions with alkenes (see refs 1 and 2).
(11) For the previous enantioselective total syntheses, see: (a) Tietze, L. F.; Raschke, T. Synlett 1995, 6, 597. (b) Schmalz, H. G.; Kiehl, O.; Korell, U.; Lex, J. Synthesis 2003, 1851.
(12) Suzuki, H.; Kondo, A.; Ogawa, T. Chem. Lett. 1985, 411.
(13) Larock, R. C.; Leung, W.; Dunn, S. S. Tetrahedron Lett. 1989, 30, 6629.
(14) McDonald, C.; Holcomb, H.; Kennedy, K.; Kirkpatrick, E.; Leathers, T.; Vanemon, P. J. Org. Chem. 1989, 54, 1213.
JA809405C


[^0]:    + The Scripps Research Institute.
    \& University of California, San Diego.
    ${ }^{\text {§ }}$ University of Karlsruhe (TH).

[^1]:    ${ }^{a}$ Reactions were performed on 0.25 mmol scale using $20 \mathrm{~mol} \%$ of catalyst $(2 R, 5 R)-\mathbf{A}, 20 \mathrm{~mol} \%$ of TFA, 2.0 equiv of CAN, and 2.0 equiv of additive in the specified solvent $(4.0 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{b}$ Yield obtained after flash chromatography. ${ }^{c}$ Determined by HPLC analysis on chiral stationary phase of corresponding alcohols obtained by $\mathrm{NaBH}_{4}$ reduction.

